Summary Certificate of Analysis

Page 1 of 1

Batch: TS-00126 ISO 9001 2015 Cert No: C2021-04309

Date of Formulation: 2022-17-11 Strain: Terpee Slurpee Device: SL-PP6815 Date of Manufacture: 2022-18-11

Report Date: 2022-19-11 **Ingredients License Numbers:** Product: 2 GRAM DISPOSABLE AG-R1058843IHH (Delta 8), Sku: THCX-DV-LR-TS-2-FZF AG-R1072031IHH (Live Resin)

Address of Manufacture: Abundant Labs, 289 Silkwood Dr, Canton, NC 28716

Instrumentation: HPLC (multiple) Instrument ID: HPLC Method: FF1011 (Frozen Fields Summary)

Analyte	LOD/LOQ (mg/g)	mg/g	% by weight
CBD	.0877	27.51	2.75
CBDA	.877	32.45	3.245
Total CBD*		54.96	5.49
Δ9 ΤΗС	.0877	LOQ	
THCA	.0877	21.00	0.21
Total THC*	.0877	21.00	0.21
CBG	.0877	LOQ	
CBGA	.0877	5.87	.58
Total CBG*	.0877	5.87	.58
THC-X IV	.877	139.2	13.92
THC-X A	.877	LOQ	
THC-X B	.877	45.25	4.525
Total THC-X*	.877	184.45	30.80
CBC	.877	5.84	.58
CBDV	.877	LOQ	
CBN	.877	31.03	3.10
Δ8 ΤΗС	.877	531.91	53.91
THCV	.877	LOQ	
HHC	.877	LOQ	
THCP	.877	8.6	.86
Total Tested Cannabinoids		845.72	84.57

Totals account for decarboxylation of the acid and equal XXX + (XXXA * 0.877)

For example:

Total THC = $\Delta 9$ -THC + (THCA * 0.877)

Moisture content not included in Summary.

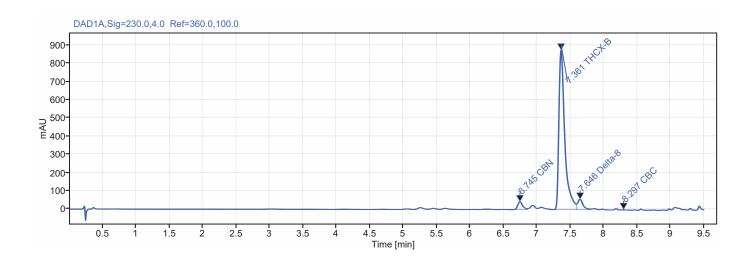
Results Summary:	Pass	Fail	Notes: N/A
Cannabinoid Compliance:	\checkmark		
Pesticides:	\checkmark		
Residual Solvents:	\checkmark		
Heavy Metals:	\checkmark		Signed By: Aaron O'Connor
Terpene Content:	9.2 %		Production Manager

ND = Not Detected

NT = Not Tested

LOQ = Below Limit of quantification LOD = Limit Of Detection

Single Injection Report


Sample name: Butyrate Ester

Data file: Buty Ester2022-11-07 14-57-28-08- Operator: Davis Collins

00.dx

Instrument: Agilent Infinity II HPLC Injection date: 2022-11-07 14:58:11-08:00

Acq. method:Cannabis bottom sense.amxLocation:D1F-B3Processing method:*THCx %.pmxType:Sample

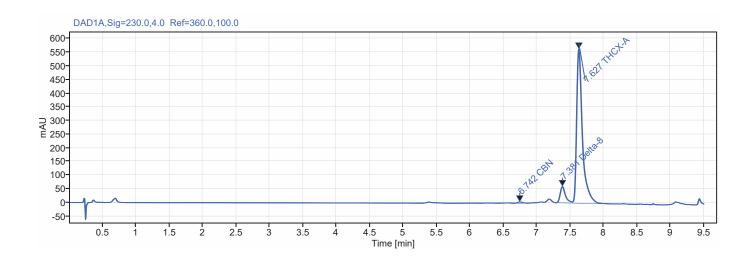
Signal:	DAD1A,S	ig=230.0,4.0 Ref=360.0,100.0					
Name		RT [min]	Expected RT	Area	Wt. %		
CBN		6.74	6.770	225.593	3.81		
THCX-B		7.36	7.412	5362.327	90.55		
Delta-8		7.65	7.674	326.254	5.51		
CBC		8.30	8.195	7.581	0.13		

Total THCX Potency					
905.5 mg/ml					
Total △8-THC Potency					
51.5 mg/ml					
Total CBD Potency					
0 mg/ml					

For informational purposes only.

Printed: 2022-11-21 16:39:07-08:00

Single Injection Report


Sample name: Acetoacetate Ester

Data file: Ace Ester2022-11-07 14-45-42-08- Operator: Davis Collins

00.dx

Instrument: Agilent Infinity II HPLC Injection date: 2022-11-07 14:46:27-08:00

Acq. method:Cannabis bottom sense.amxLocation:D1F-B2Processing method:*THCx %.pmxType:Sample

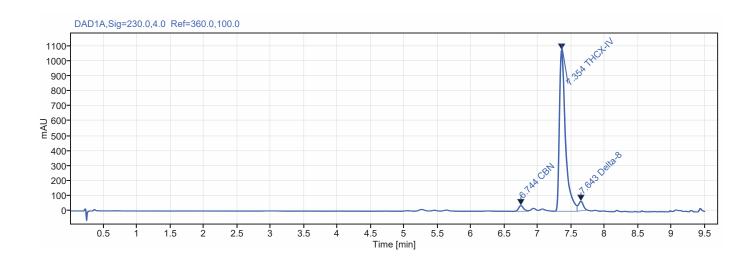
Signal:	DAD1A,S	AD1A,Sig=230.0,4.0 Ref=360.0,100.0					
Name		RT [min]	Expected RT	Area	Wt. %		
CBN		6.74	6.770	22.293	0.60		
Delta-8		7.38	7.412	327.002	8.76		
THCX-A		7.63	7.674	3382.642	90.64		

Total THCX Potency					
906.4 mg/ml					
Total △8-THC Potency					
87.6 mg/ml					
Total CBD Potency					
0 mg/ml					

For informational purposes only.

Printed: 2022-11-21 16:41:26-08:00

Single Injection Report


Sample name: Isovalerate Ester

Data file: Isov Ester2022-11-07 15-09-14-08- Operator: Davis Collins

00.dx

Instrument: Agilent Infinity II HPLC Injection date: 2022-11-07 15:09:58-08:00

Acq. method:Cannabis bottom sense.amxLocation:D1F-B4Processing method:*THCx %.pmxType:Sample

Signal:	DAD1A,S	Sig=230.0,4.0 Ref=360.0,100.0					
Name		RT [min]	Expected RT	Area	Wt. %		
CBN		6.74	6.770	204.139	2.79		
THCX-IV		7.35	7.412	6789.086	92.68		
Delta-8		7.64	7.674	331.967	4.53		

Total THCX Potency					
926.8 mg/ml					
Total △8-THC Potency					
45.3 mg/ml					
Total CBD Potency					
0 mg/ml					

For informational purposes only.

Printed: 2022-11-21 16:37:15-08:00

721 Cortaro Dr. Sun City Center, FL 33573 www.acslabcannabis.com

DEA No. RA0571996 **FL License** # CMTL-0003 **CLIA No.** 10D1094068 Delta 8 sample 3 Sample Matrix: CBD/HEMP Derivative Products (Inhalation - Heated)

Certificate of Analysis

R&D

Tested SOP13.052 (LCUV)

ABUNDANT LABS 289 SILKWOOD DR CANTON, NC 28716 Batch # N/A Batch Date: 2022-10-19 Extracted From: hemp Test Reg State: Florida

Order # ABU221020-010001 Order Date: 2022-10-20 Sample # AADP577

Sampling Date: 2022-10-24 Lab Batch Date: 2022-10-24 Completion Date: 2022-10-27 Initial Gross Weight: 14.316 g

Product Image

Delta 8/Delta 10 Potency 13 - (LCUV)

Specimen Weight: 54.050 mg

Analyte	LOD (%)	LOQ (%)	Result (mg/g)	(%)	
Delta-8 THC	2.60E-5	0.0015	836.820	83.682	
CBD	5.40E-5	0.0015	10.530	1.053	
CBC	1.80E-5	0.0015		<l0q< td=""><td></td></l0q<>	
CBDA	1.00E-5	0.0015		<l0q< td=""><td></td></l0q<>	
CBDV	6.50E-5	0.0015		<l0q< td=""><td></td></l0q<>	
CBG	2.48E-4	0.0015		<l0q< td=""><td></td></l0q<>	
CBGA	8.00E-5	0.0015		<l0q< td=""><td></td></l0q<>	
CBN	1.40E-5	0.0015		<loq< td=""><td></td></loq<>	
Delta-10 THC	3.00E-6	0.0015		<l0q< td=""><td></td></l0q<>	
Delta-9 THC	1.30E-5	0.1		<l0q< td=""><td></td></l0q<>	
Delta6a10a-THC	8.47E-5	0.0015		<l0q< td=""><td></td></l0q<>	
THCA-A	3.20E-5	0.0015		<l0q< td=""><td></td></l0q<>	
THCV	7 00F-6	0.0015		<1.00	

⋄ Potency Summary

	Total Delta 8 83.682%	Total Delta 10 None Detected
_	Total Active THC None Detected	Total Active CBD 1.053%
	Total CBG None Detected	Total CBN - None Detected
-	Other Cannabinoids None Detected	Total Cannabinoids 84.735%

Xueli Gao

Cu

Aixia Sun Lab Director/Principal Scientist

D.H.Sc., M.Sc., B.Sc., MT (AAB)

PJLA
Testing
Accreditation #101103

Ph.D., DABT

Definitions and Abbreviations used in this report: Total Active CBD = CBD + (CBD-A * 0.877), *Total CBDV = CBDV + (CBDVA * 0.87), Total Active THC = THCA-A * 0.877 + Delta 9 THC, Total THCV = THCV + (THCVA * 0.87), CBG Total = (CBGA * 0.877) + CBG, CBN Total = (CBNA * 0.877) + CBN, Total CBC = CBC + (CBCA * 0.877), Total THC-O-Acetate = Delta 8 THC-O-Acetate + Delta 9 THC-O-Acetate, Other Cannabinoids Total = Total Cannabinoids - All the listed cannabinoids on the summary section, Total Detected Cannabinoids = Delta6a 10a-THC+ Delta8-THC+ Total CBN + CBT + Delta8-THCV + Total CBC + Total CBD + Total THC+O-Acetate, Analyte Details above show the Dry Weight Concentrations unless specified as 12 % moisture concentration. (mg/ml) = Milligrams per Milliliter, LOQ = Limit of Quantitation, LOD = Limit of Detection, Dilution = Dilution Factor (ppb) = Parts per Billion, (%) = Percent, (cfu/g) = Colony Forming Unit per Gram (cfu/g) = Colony Forming U

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.

QA By: 1042 on 2022-10-27 21:31:13 V1

Report Number: 21-012071/D004.R000

Report Date: 10/19/2021 ORELAP#: OR100028

Purchase Order:

Received: 10/12/21 14:15

Customer: Hempsi

Product identity: Sour RNA Live Oil #10072100

Client/Metrc ID:

Laboratory ID: 21-012071-0001

Summary

Potency:

Analyte	Result (%)			
CBD-A	64.9	0000 4	CBD-Total	57.7%
ГНС-А	4.12	CBD-ATHC-A	L	
CBC-A [†]	2.73	• CBC-A	THC-Total	3.81%
CBG-A [†]	1.41	CBG-A		3.0170
CBD	0.795	• CBD	(Reported in pe	ercent of total sample)
CBDV-A [†]	0.273	CBDV-A		, ,
CBG [†]	0.215	• CBG		
∆9-THC	0.198	 Δ9-THC 		

Residual Solvents:

All analytes passing and less than LOQ.

Pesticides:

All analytes passing and less than LOQ.

Terpenes:

Analyte	Percent by weight	Percent of Total	Analyte	Percent by weight	Percent of Total
ß-Myrcene [†]	4.30	36.44%	Terpinolene [†]	2.24	18.98%
(R)-(+)-Limonene [†]	1.01	8.56%	ß-Caryophyllene⁺	0.739	6.26%
farnesene [†]	0.659	5.58%	trans-ß-Ocimene [†]	0.570	4.83%
(-)-GuaioI [†]	0.501	4.25%	Humulene [†]	0.308	2.61%
(-)-ß-Pinene [†]	0.236	2.00%	a-pinene [†]	0.179	1.52%
Linalool [†]	0.120	1.02%	a-Bisabolol [†]	0.107	0.91%
(+)-fenchol [†]	0.103	0.87%	a-Terpinene [†]	0.103	0.87%
a-phellandrene [†]	0.0969	0.82%	(-)-a-Terpineol [†]	0.0898	0.76%
d-3-Carene [†]	0.0728	0.62%	gamma-Terpinene [†]	0.0699	0.59%
valencene [†]	0.0572	0.48%	(±)-trans-Nerolidol [†]	0.0501	0.42%
(-)-caryophyllene oxide [†]	0.0414	0.35%	Camphene [†]	0.0292	0.25%
cis-ß-Ocimene [†]	0.0248	0.21%	p-Cymene [†]	0.0247	0.21%
(+)-BorneoI [†]	0.0240	0.20%	Total Terpenes [†]	11.8	100.00%

Metals:

Less than LOQ for all analytes.

Report Number: 21-012071/D004.R000

Report Date: 10/19/2021 **ORELAP#:** OR100028

Purchase Order:

Received: 10/12/21 14:15

Customer: Hempsi

3913 NE Hancock St Unit 500 Portland Oregon 97212

United States of America (USA)

Product identity: Sour RNA Live Oil #10072100

Client/Metrc ID:

Sample Date:

Laboratory ID: 21-012071-0001

Evidence of Cooling: No
Temp: 19 °C
Relinquished by: USPS

Sample Results

Potency	Method J	AOAC 2	2015 V98	-6 (mod)	Units %	Batch: 2109283	Analyze: 10/13/21	7:46:00 PM
Analyte	As	Dry	LOQ	Notes				
	Received	weight						
CBC	< LOQ		0.0877					CBD-A
CBC-A [†]	2.73		0.0877					THC-A
CBC-Total [†]	2.39		0.165					CBC-A
CBD	0.795		0.0877					CBG-ACBD
CBD-A	64.9		0.877					CBDV-A
CBD-Total	57.7		0.857					CBG
CBDV [†]	< LOQ		0.0877					 Δ9-THC
CBDV-A [†]	0.273		0.0877					
CBDV-Total [†]	0.237		0.164					
CBE [†]	< LOQ		0.0877					
CBG [†]	0.215		0.0877					
CBG-A [†]	1.41		0.0877					
CBG-Total	1.45		0.164					
CBL [†]	< LOQ		0.0877					
CBL-A [†]	< LOQ		0.0877					
CBL-Total [†]	< LOQ		0.165					
CBN	< LOQ		0.0877					
CBT [†]	< LOQ		0.0877					
$\Delta 8\text{-THC}^{\dagger}$	< LOQ		0.0877					
Δ8-THCV	< LOQ		0.0877					
Δ9-THC	0.198		0.0877					
THC-A	4.12		0.0877					
THC-Total	3.81		0.165					
THCV [†]	< LOQ		0.0877					
THCV-A [†]	< LOQ		0.0877					
THCV-Total [†]	< LOQ		0.164					
Total Cannabinoids [†]	74.6							

Report Number: 21-012071/D004.R000

10/19/2021 Report Date: ORELAP#: OR100028

Purchase Order:

10/12/21 14:15 Received:

Solvents	Method	Residua	l Solv	ents by GC/MS	Units µg/g Batch 2	109400	Analyz	e 10/1	9/21 12:27 PM
Analyte	Result	Limits	LOQ	Status Notes	Analyte	Result	Limits	LOQ :	Status Notes
1,4-Dioxane	< LOQ	380	100	pass	2-Butanol	< LOQ	5000	200	pass
2-Ethoxyethanol	< LOQ	160	30.0	pass	2-Methylbutane	< LOQ		200	
2-Methylpentane	< LOQ		30.0		2-Propanol (IPA)	< LOQ	5000	200	pass
2,2-Dimethylbutane	< LOQ		30.0		2,2-Dimethylpropane	< LOQ		200	
2,3-Dimethylbutane	< LOQ		30.0		3-Methylpentane	< LOQ		30.0	
Acetone	< LOQ	5000	200	pass	Acetonitrile	< LOQ	410	100	pass
Benzene	< LOQ	2.00	1.00	pass	Butanes (sum)	< LOQ	5000	400	pass
Cyclohexane	< LOQ	3880	200	pass	Ethyl acetate	< LOQ	5000	200	pass
Ethyl benzene	< LOQ		200		Ethyl ether	< LOQ	5000	200	pass
Ethylene glycol	< LOQ	620	200	pass	Ethylene oxide	< LOQ	50.0	20.0	pass
Hexanes (sum)	< LOQ	290	150	pass	Isopropyl acetate	< LOQ	5000	200	pass
Isopropylbenzene	< LOQ	70.0	30.0	pass	m,p-Xylene	< LOQ		200	
Methanol	< LOQ	3000	200	pass	Methylene chloride	< LOQ	600	60.0	pass
Methylpropane	< LOQ		200		n-Butane	< LOQ		200	
n-Heptane	< LOQ	5000	200	pass	n-Hexane	< LOQ		30.0	
n-Pentane	< LOQ		200		o-Xylene	< LOQ		200	
Pentanes (sum)	< LOQ	5000	600	pass	Propane	< LOQ	5000	200	pass
Tetrahydrofuran	< LOQ	720	100	pass	Toluene	< LOQ	890	100	pass
Total Xylenes	< LOQ		400		Total Xylenes and Ethyl	< LOQ	2170	600	pass

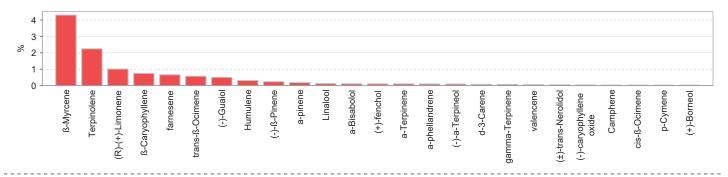
Report Number: 21-012071/D004.R000

Report Date: 10/19/2021 ORELAP#: OR100028

Purchase Order:

10/12/21 14:15 Received:

Pesticides	Method	AOAC	2007.01 & EN	15662 (mod)	Units mg/kg Bate	ch 2109234	Analy	ze 10/13/21 12:13 PM
Analyte	Result	Limits	LOQ Status	Notes	Analyte	Result	Limits	LOQ Status Notes
Abamectin	< LOQ	0.50	0.250 pass		Acephate	< LOQ	0.40	0.250 pass
Acequinocyl	< LOQ	2.0	1.00 pass		Acetamiprid	< LOQ	0.20	0.100 pass
Aldicarb	< LOQ	0.40	0.200 pass		Azoxystrobin	< LOQ	0.20	0.100 pass
Bifenazate	< LOQ	0.20	0.100 pass		Bifenthrin	< LOQ	0.20	0.100 pass
Boscalid	< LOQ	0.40	0.200 pass		Carbaryl	< LOQ	0.20	0.100 pass
Carbofuran	< LOQ	0.20	0.100 pass		Chlorantraniliprole	< LOQ	0.20	0.100 pass
Chlorfenapyr	< LOQ	1.0	0.500 pass		Chlorpyrifos	< LOQ	0.20	0.100 pass
Clofentezine	< LOQ	0.20	0.100 pass		Cyfluthrin	< LOQ	1.0	0.500 pass
Cypermethrin	< LOQ	1.0	0.500 pass		Daminozide	< LOQ	1.0	0.500 pass
Diazinon	< LOQ	0.20	0.100 pass		Dichlorvos	< LOQ	1.0	0.500 pass
Dimethoate	< LOQ	0.20	0.100 pass		Ethoprophos	< LOQ	0.20	0.100 pass
Etofenprox	< LOQ	0.40	0.200 pass		Etoxazole	< LOQ	0.20	0.100 pass
Fenoxycarb	< LOQ	0.20	0.100 pass		Fenpyroximate	< LOQ	0.40	0.200 pass
Fipronil	< LOQ	0.40	0.200 pass		Flonicamid	< LOQ	1.0	0.400 pass
Fludioxonil	< LOQ	0.40	0.200 pass		Hexythiazox	< LOQ	1.0	0.400 pass
lmazalil	< LOQ	0.20	0.100 pass		Imidacloprid	< LOQ	0.40	0.200 pass
Kresoxim-methyl	< LOQ	0.40	0.200 pass		Malathion	< LOQ	0.20	0.100 pass
Metalaxyl	< LOQ	0.20	0.100 pass		Methiocarb	< LOQ	0.20	0.100 pass
Methomyl	< LOQ	0.40	0.200 pass		MGK-264	< LOQ	0.20	0.100 pass
Myclobutanil	< LOQ	0.20	0.100 pass		Naled	< LOQ	0.50	0.250 pass
Oxamyl	< LOQ	1.0	0.500 pass		Paclobutrazole	< LOQ	0.40	0.200 pass
Parathion-Methyl	< LOQ	0.20	0.200 pass		Permethrin	< LOQ	0.20	0.100 pass
Phosmet	< LOQ	0.20	0.100 pass		Piperonyl butoxide	< LOQ	2.0	1.00 pass
Prallethrin	< LOQ	0.20	0.200 pass		Propiconazole	< LOQ	0.40	0.200 pass
Propoxur	< LOQ	0.20	0.100 pass		Pyrethrin I (total)	< LOQ	1.0	0.500 pass
Pyridaben	< LOQ	0.20	0.100 pass		Spinosad	< LOQ	0.20	0.100 pass
Spiromesifen	< LOQ	0.20	0.100 pass		Spirotetramat	< LOQ	0.20	0.100 pass
Spiroxamine	< LOQ	0.40	0.200 pass		Tebuconazole	< LOQ	0.40	0.200 pass
Thiacloprid	< LOQ	0.20	0.100 pass		Thiamethoxam	< LOQ	0.20	0.100 pass
Trifloxystrobin	< LOQ	0.20	0.100 pass					


Report Number: 21-012071/D004.R000

Report Date: 10/19/2021 **ORELAP#:** OR100028

Purchase Order:

Received: 10/12/21 14:15

Terpenes	Method	J AOAC	2015 V98-6		Units % Batch 2	2109407	Analyz	e 10/19/21	12:00 AM
Analyte	Result	LOQ	% of Total	Notes	Analyte	Result	LOQ	% of Total	Notes
ß-Myrcene†	4.30	0.018	36.44%		Terpinolene [†]	2.24	0.018	18.98%	
(R)-(+)-Limonene [†]	1.01	0.018	8.56%		ß-Caryophyllene [†]	0.739	0.018	6.263%	
farnesene [†]	0.659	0.018	5.585%		trans-β-Ocimene⁺	0.570	0.012	4.831%	
(-)-Guaiol [†]	0.501	0.018	4.246%		Humulene [†]	0.308	0.018	2.610%	
(-)-ß-Pinene [†]	0.236	0.018	2.000%		a-pinene [†]	0.179	0.018	1.517%	
Linalool [†]	0.120	0.018	1.017%		a-Bisabolol [†]	0.107	0.018	0.907%	
(+)-fenchol [†]	0.103	0.018	0.873%		a-Terpinene⁺	0.103	0.018	0.873%	
a-phellandrene [†]	0.0969	0.018	0.8212%		(-)-a-Terpineol [†]	0.0898	0.018	0.7610%	
d-3-Carene [†]	0.0728	0.018	0.6169%		gamma-Terpinene [†]	0.0699	0.018	0.5924%	
valencene [†]	0.0572	0.018	0.4847%		(±)-trans-Nerolidol [†]	0.0501	0.018	0.4246%	
(-)-caryophyllene oxide ⁺	0.0414	0.018	0.3508%		Camphene [†]	0.0292	0.018	0.2475%	
cis-ß-Ocimene [†]	0.0248	0.006	0.2102%		p-Cymene [†]	0.0247	0.018	0.2093%	
(+)-Borneol [†]	0.0240	0.018	0.2034%		Sabinene [†]	< LOQ	0.018	0.00%	
Geraniol [†]	< LOQ	0.018	0.00%		nerol [†]	< LOQ	0.018	0.00%	
Sabinene hydrate [†]	< LOQ	0.018	0.00%		Geranyl acetate [†]	< LOQ	0.018	0.00%	
(±)-Camphor ⁺	< LOQ	0.018	0.00%		(+)-Pulegone [†]	< LOQ	0.018	0.00%	
(-)-IsopulegoI [†]	< LOQ	0.018	0.00%		(+)-Cedrol [†]	< LOQ	0.018	0.00%	
(±)-cis-Nerolidol [†]	< LOQ	0.018	0.00%		(±)-fenchone [†]	< LOQ	0.018	0.00%	
a-cedrene [†]	< LOQ	0.018	0.00%		Eucalyptol [†]	< LOQ	0.018	0.00%	
lsoborneol†	< LOQ	0.018	0.00%		Menthol [†]	< LOQ	0.018	0.00%	
Total Terpenes	11.8								

Metals								
Analyte	Result	Limits	Units	LOQ	Batch	Analyze	Method	Status Notes
Arsenic	< LOQ		mg/kg	0.0451	2109343	10/15/21	AOAC 2013.06 (mod.)	X
Cadmium	< LOQ		mg/kg	0.0451	2109343	10/15/21	AOAC 2013.06 (mod.)	X
Lead	< LOQ		mg/kg	0.0451	2109343	10/15/21	AOAC 2013.06 (mod.)	X
Mercury	< LOQ		mg/kg	0.0225	2109343	10/15/21	AOAC 2013.06 (mod.)	X

Report Number: 21-012071/D004.R000

10/19/2021 Report Date: ORELAP#: OR100028

Purchase Order:

10/12/21 14:15 Received:

Mycotoxins								
Analyte	Result	Limits	Units	LOQ	Batch	Analyze	Method	Status Notes
Aflatoxin B2 [†]	< LOQ		μg/kg	5.00	2109363	10/18/21	AOAC 2007.01 & EN 15	
Aflatoxin B1 [†]	< LOQ		μg/kg	5.00	2109363	10/18/21	AOAC 2007.01 & EN 15	
Aflatoxin G1 [†]	< LOQ		μg/kg	5.00	2109363	10/18/21	AOAC 2007.01 & EN 15	
Aflatoxin G2 ⁺	< LOQ		μg/kg	5.00	2109363	10/18/21	AOAC 2007.01 & EN 15	
Deoxynivalenol [†]	< LOQ		μg/kg	200	2109363	10/18/21	AOAC 2007.01 & EN 15	
Fumonisin B1 [†]	< LOQ		μg/kg	200	2109363	10/18/21	AOAC 2007.01 & EN 15	
Fumonisin B2 [†]	< LOQ		μg/kg	200	2109363	10/18/21	AOAC 2007.01 & EN 15	
HT2-Toxin [†]	< LOQ		μg/kg	40.0	2109363	10/18/21	AOAC 2007.01 & EN 15	
Nivalenol [†]	< LOQ		μg/kg	400	2109363	10/18/21	AOAC 2007.01 & EN 15	
Ochratoxin A [†]	< LOQ		μg/kg	5.00	2109363	10/18/21	AOAC 2007.01 & EN 15	
Ochratoxin B [†]	< LOQ		μg/kg	2.00	2109363	10/18/21	AOAC 2007.01 & EN 15	
T2-Toxin†	< LOQ		μg/kg	20.0	2109363	10/18/21	AOAC 2007.01 & EN 15	
Zearalenone [†]	< LOQ		μg/kg	200	2109363	10/18/21	AOAC 2007.01 & EN 15	

Report Number: 21-012071/D004.R000

Report Date: 10/19/2021 ORELAP#: OR100028

Purchase Order:

Received: 10/12/21 14:15

These test results are representative of the individual sample selected and submitted by the client.

Abbreviations

Limits: Action Levels per OAR-333-007-0400, OAR-333-007-0210, OAR-333-007-0220

Limit(s) of Quantitation (LOQ): The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence.

† = Analyte not NELAP accredited.

Units of Measure

μg/g = Microgram per gram μg/kg = Micrograms per kilogram = parts per billion (ppb) mg/kg = Milligram per kilogram = parts per million (ppm) % = Percentage of sample % wt = μ g/g divided by 10,000

Glossary of Qualifiers

X: Not ORELAP accredited.

Approved Signatory

Derrick Tanner General Manager

Report Number: 21-012071/D004.R000

Report Date: 10/19/2021

ORELAP#:

OR100028

Purchase Order:

Received: 10/12/21 14:15

Hemp / Cannabis Usable / Extract / Finished Products Chain of Custody Record

Document Control ID: 2732 Revision: 1 Effective: 05/04/2021 ORELAP ID: OR100028

Medical Company of the Company of th						А	nalys	is Rec	queste	ed				,	O Number	
Company: Hempsi Contact: Reid Stewart Street: 815 Grand Blvd City: Vancouver State: WA zip: 98661 Email Results: r.stewart@hempsi.com h: ()		les – OR 59 compounds	esticide Multi-Residue – 379 compounds		Residual Solvents	Moisture & Water Activity	es	Micro: Yeast and Mold	Micro: E.Coli and Total Coliform	Heavy Metals	xins		Proje Pro Custom Report t	ct Number: ject Name: Reporting: o State -	ETRC or Other:	
ab ID Client Sample Identification	Date	Time	Pesticides	Pesticio	Potency	Residu	Moistu	Terpenes	Micro:	Micro:	Heavy	Mycotoxins	Other:	Sample Type †	Weight (Units)	Comments/Metrc ID
Sour RNA Live Oil #10072100	10/8/2	10/8	x		x	x		X	1		X	x			~ 10g	
		10/8	-	-					9		_	-				
		10/8	-	-							-	-	_			
		10/8	+-	-	-	_			_	_	_	-				
		10/8	-	-	-	_				_	-	_				
		10/8	-	-	-						-	_				
		10/8		-	-						-					
Relinquished By:	Date	10/8 Time		Town I	D	eceived	Die				ate	Ti	me			Lab Use Only:
Andrew Gurton	10/9/21	Transit to	4	0	D.	S	by.			1	2 21	14:		Evidence Sample i	of cooling:	co □ Client drop Yes □ No
													10,000	Prelog st		ec Li Net:

† - Sample Type Codes: Vegetation (V); Isolates (S); Extract/Concentrate (C); Tincture/Topical (T); Edible (E); Beverage (B)

Samples submitted to Columbia Laboratories with testing requirements constitute an agreement for services in accordance with the current terms of service associated with this COC. By signing "Relinquished by" you are agreeing to these terms 12423 NE Whitaker Way P: (503) 254-1794 | Fax: (503) 254-1452 Page ____of_ www.columbialaboratories.com Portland, OR 97230

Report Number: 21-012071/D004.R000

10/19/2021 Report Date: ORELAP#: OR100028

Purchase Order:

Received: 10/12/21 14:15

Document ID: 3177 Revision: 2 Effective: 06/25/2021 Page 1 of 1

Job	Number: Search Name:			
Pac	kage/Cooler opened on (if different than received date/time) Date:	4:15	<u> </u>	
	reived By (Initials): Date: Time:			
1)		NO	NA	
	Does date match collection date on COC?YES	NO	NA	
2)	Was Chain of Custody (COC) included in the package/cooler?	NO	NA	
3)	Was COC signed when relinquished and received? (time, date)?	NO	NA	
4)	How was the package/cooler delivered?			
	UPS FEDEX USPS CLIENT COURIER OTHER:		_	
	Tracking Number (written in or copy of shipping label): 9405 5111 0843	5	375 8903	35
5)	Was packing material used?	NO	NA	
	Peanuts Bubble Wrap Foam Paper Other:			
6)	Was temperature upon receipt 4°C+- 2°C (if appropriate)? YES If not, client contacted:	NO	NA	
	Proceed? YES	NO		
7)	Was there evidence of cooling?	NO) NA	
	What kind? Blue Ice Ice Cooler Packs Dry Ice			
8)	Were all sample containers sealed in separate plastic bags?	NO	NA	
9)	Did all sample containers arrive in good condition?	NO	NA	
10)	Were all sample container labels complete?	NO	NA	
11)	Did all sample container labels and tags agree with the COC?	NO	NA	
12)	Were correct sample containers used for the tests indicated?	NO	NA	
13)	Were VOA vials checked for absence of air bubbles (note if found)?	NO	NA	
14)	Was a sufficient amount of sample sent in each sample container?	NO	NA	
16)	Sample location prior to login: R99 R39 R44 F44 Ambient Shelf Cannal	bis Ta	ble Other:	
Exp	plain any discrepancies:			
1				
	2			

Report Number: 21-012071/D004.R000

10/19/2021 Report Date: ORELAP#: OR100028

Purchase Order:

Received: 10/12/21 14:15

Revision: Document ID: Legacy ID: Effective:

Laboratory Pesticide Quality Control Results

AOAC 2007.1 & EN 15662	Units	: mg/Kg			Batch ID: 2109234			
Method Blank				Laboratory Cont				
Analyte	Blank Result	Blank Limits	Notes	LCS Result	LCS Spike	LCS % Rec	Limits	Notes
Acephate	0.015	< 0.250	1	0.910	1.000	91.0	69.9 - 130	
Acequinocyl	0.000	< 1.000	-	3.706	4.000	92.7	71.1 - 132	
Acetamiprid	0.000	< 0.100		0.369	0.400	92.1	70.5 - 131	
Aldicarb	0.000	< 0.200	1	0.741	0.800	92.6	73.3 - 136	
Abamectin	0.000	< 0.250	+	0.944	1.000	94.4	71.8 - 133	
Azoxystrobin	0.000	< 0.100		0.344	0.400	86.1	69.9 - 130	
Bifenazate	0.000	< 0.100	+	0.415	0.400	103.8	74.3 - 138	
Bifenthrin	0.000	< 0.100	8	0.375	0.400	93.8	69.7 - 129	
Boscalid	0.000	< 0.200	-	0.707	0.800	88.4	70.3 - 131	
Carbaryl	0.000	< 0.100		0.707	0.400	93.3	70.1 - 130	
	0.002	5.4 (2.3.73) (3.3.7)		VEX.100.000	0.400	92.3		
Carbofuran		< 0.100		0.369				
Chlorantraniliprol	0.000	< 0.100		0.361	0.400	90.3	69.0 - 128	
Chlorfenapyr	0.000	< 0.500		1.884	2.000	94.2	71.1 - 132	
Chlorpyrifos	0.000	< 0.100		0.362	0.400	90.4	68.3 - 127	
Clofentezine	0.000	< 0.100		0.364	0.400	91.1	69.6 - 129	
Cyfluthrin	0.000	< 0.500		1.892	2.000	94.6	71.9 - 134	
Cypermethrin	0.000	< 0.500		1.846	2.000	92.3	71.1 - 132	
Daminozide	0.088	< 0.500		1.769	2.000	88.5	71.8 - 133	
Diazinon	0.000	< 0.100		0.422	0.400	105.6	70.0 - 130	
Dichlorvos	0.000	< 0.500		1.790	2.000	89.5	68.4 - 127	
Dimethoat	0.000	< 0.100		0.362	0.400	90.5	70.5 - 131	
Ethoprophos	0.000	< 0.100		0.360	0.400	90.0	69.3 - 129	
Etofenprox	0.000	< 0.200		0.733	0.800	91.6	71.9 - 134	
toxazol	0.000	< 0.100	-	0.360	0.400	90.0	70.5 - 131	
enoxycarb	0.000	< 0.100	+	0.364	0.400	91.1	69.9 - 130	
enpyroximat	0.000	< 0.200	+	0.738	0.800	92.3	70.6 - 131	
ipronil	0.000	< 0.200	-	0.779	0.800	97.4	71.9 - 134	
lonicamid	0.000	< 0.250	-	0.890	1.000	89.0	70.4 - 131	
		100			1			
Fludioxonil	0.000	< 0.200	_	0.738	0.800	92.2	73.6 - 137	
Hexythiazox	0.000	< 0.250		0.925	1.000	92.5	68.9 - 128	
mazalil	0.000	< 0.100		0.368	0.400	92.0	72.2 - 134	
midacloprid	0.000	< 0.200		0.727	0.800	90.8	69.7 - 130	
Kresoxim-Methyl	0.000	< 0.200		0.724	0.800	90.5	70.2 - 130	
Malathion	0.000	< 0.100		0.364	0.400	91.1	69.4 - 129	
Metalaxyl	0.000	< 0.100		0.364	0.400	91.1	70.5 - 131	
Methiocarb	0.004	< 0.100		0.363	0.400	90.8	70.1 - 130	
Methomyl	0.000	< 0.200		0.703	0.800	87.8	69.7 - 129	
MGK 264	0.000	< 0.100		0.361	0.400	90.2	69.7 - 129	l
Myclobutanil	0.000	< 0.100		0.361	0.400	90.3	70.1 - 130	
Valed	0.000	< 0.250		0.903	1.000	90.3	72.2 - 134	
Oxamyl	0.000	< 0.500	1	1.783	2.000	89.2	70.7 - 131	
Paclobutrazol	0.000	< 0.200		0.731	0.800	91.3	70.5 - 131	
Parathion Methyl	0.000	< 0.200		0.758	0.800	94.8	72.1 - 134	
Permethrin	0.000	< 0.100	+	0.379	0.400	94.8	70.2 - 130	
Phosmet	0.000	< 0.100		0.361	0.400	90.2	69.8 - 130	
Piperonyl butoxide	0.000	< 0.500		1.869	2.000	93.4	72.6 - 135	-
Prallethrin	0.000	< 0.100		0.373	0.400	93.4	70.7 - 131	
Propiconazole	0.000	< 0.200	_	0.737	0.400	92.2	70.7 - 131	
	0.000	< 0.200		0.737	0.800	92.2		
Propoxur				100000000000000000000000000000000000000	1			
Pyrethrins	0.000	< 0.100		0.380	0.413	92.0	69.0 - 128	
Pyridaben	0.000	< 0.100		0.368	0.400	92.0	69.7 - 129	
Spinosad	0.000	< 0.100		0.382	0.388	98.4	72.4 - 135	
Spiromesifen	0.000	< 0.100		0.369	0.400	92.2	71.3 - 132	
Spirotetramat	0.000	< 0.100		0.369	0.400	92.3	70.4 - 131	
Spiroxamine	0.000	< 0.200		0.709	0.800	88.6	68.5 - 127	
ebuconazol	0.000	< 0.200		0.753	0.800	94.2	69.9 - 130	
Thiacloprid	0.000	< 0.100		0.364	0.400	91.0	69.6 - 129	
Thiamethoxam	0.000	< 0.100		0.378	0.400	94.5	69.7 - 129	
Trifloxystrobin	0.000	< 0.100	1	0.359	0.400	89.7	70.4 - 131	

Report Number: 21-012071/D004.R000

10/19/2021 Report Date: ORELAP#: OR100028

Purchase Order:

Received: 10/12/21 14:15

Revision: Document ID: Legacy ID: Effective:

AOAC 2007.1 & EN 15662			Units:	mg/Kg				Bat	ch ID: 210923	4
Matrix Spike/Matrix Spike	e Duplicate Recov	eries					Sample ID:	21-011896-0	001	
Analyte	Result	MS Res	MSD Res	Spike	RPD%	Limit	MS % Rec	MSD % Rec	Limits	Notes
Acephate	0.000	0.787	0.795	1.000	0.9%	< 30	78.7%	79.5%	50 - 150	
Acequinocyl	0.000	1.889	1.969	4.000	4.1%	< 30	47.2%	49.2%	50 - 150	
Acetamiprid	0.000	0.349	0.351	0.400	0.5%	< 30	87.2%	87.6%	50 - 150	1
Aldicarb	0.000	0.708	0.709	0.800	0.1%	< 30	88.6%	88.6%	50 - 150	1
Abamectin	0.000	0.732	0.742	1.000	1.3%	< 30	73.2%	74.2%	50 - 150	1
Azoxystrobin	0.000	0.325	0.330	0.400	1.7%	< 30	81.1%	82.6%	50 - 150	1
Bifenazate	0.000	0.426	0.416	0.400	2.3%	< 30	106.5%	104.1%	50 - 150	1
Bifenthrin	0.000	0.228	0.225	0.400	1.5%	< 30	57.0%	56.1%	50 - 150	1
Boscalid	0.000	0.666	0.759	0.800	13.2%	< 30	83.2%	94.9%	50 - 150	1
Carbaryl	0.000	0.320	0.320	0.400	0.1%	< 30	80.0%	80.1%	50 - 150	1
Carbofuran	0.000	0.318	0.317	0.400	0.3%	< 30	79.6%	79.3%	50 - 150	1
Chlorantraniliprol	0.000	0.371	0.399	0.400	7.2%	< 30	92.8%	99.8%	50 - 150	
Chlorfenapyr	0.000	1.112	1.280	2.000	14.1%	< 30	55.6%	64.0%	50 - 150	1 -
Chlorpyrifos	0.000	0.373	0.386	0.400	3.6%	< 30	93.1%	96.5%	50 - 150	1
Clofentezine	0.000	0.284	0.278	0.400	2.4%	< 30	71.1%	69.4%	50 - 150	1 -
Cyfluthrin	0.000	1.048	1.105	2.000	5.3%	< 30	52.4%	55.2%	30 - 150	1
Cypermethrin	0.000	1.048	1.105	2.000	1.4%	< 30	52.4%	55.2%		-
	P3700000 1	*** (2000) 100 (2000) 100	1.0000000000000000000000000000000000000		70277/1000	14/95/05/0	1.0000011.00001 11			
Daminozide	0.084	1.611	1.526	2.000	5.7%	< 30	76.3%	72.1%	30 - 150	-
Diazinon	0.000	0.396	0.400	0.400	1.1%	< 30	99.0%	100.0%	50 - 150	1
Dichlorvos	0.000	1.491	1.480	2.000	0.8%	< 30	74.6%	74.0%	50 - 150	1
Dimethoat	0.000	0.337	0.336	0.400	0.1%	< 30	84.2%	84.1%	50 - 150	1
Ethoprophos	0.008	0.342	0.347	0.400	1.5%	< 30	83.5%	84.8%	50 - 150	1
Etofenprox	0.000	0.478	0.474	0.800	0.9%	< 30	59.7%	59.2%	50 - 150	1
Etoxazol	0.000	0.313	0.307	0.400	2.1%	< 30	78.3%	76.7%	50 - 150	1
Fenoxycarb	0.000	0.337	0.336	0.400	0.5%	< 30	84.3%	83.9%	50 - 150	
Fenpyroximat	0.000	0.538	0.527	0.800	2.0%	< 30	67.3%	65.9%	50 - 150	1
Fipronil	0.000	0.533	0.524	0.800	1.8%	< 30	66.7%	65.5%	50 - 150	
Flonicamid	0.000	0.755	0.737	1.000	2.4%	< 30	75.5%	73.7%	50 - 150	
Fludioxonil	0.000	0.863	0.857	0.800	0.7%	< 30	107.9%	107.2%	50 - 150	1
Hexythiazox	0.000	0.633	0.612	1.000	3.3%	< 30	63.3%	61.2%	50 - 150	1
lmazalil	0.000	0.351	0.336	0.400	4.4%	< 30	87.7%	84.0%	50 - 150	
Imidacloprid	0.000	0.943	0.924	0.800	2.1%	< 30	117.9%	115.5%	50 - 150	1
Kresoxim-Methyl	0.000	0.635	0.636	0.800	0.2%	< 30	79.3%	79.4%	50 - 150	1
Malathion	0.000	0.345	0.341	0.400	1.0%	< 30	86.2%	85.3%	50 - 150	1
Metalaxyl	0.108	0.359	0.361	0.400	0.6%	< 30	62.8%	63.2%	50 - 150	1
Methiocarb	0.003	0.349	0.353	0.400	1.0%	< 30	86.7%	87.5%	50 - 150	1
Vethomyl	0.000	0.803	0.726	0.800	10.0%	< 30	100.4%	90.8%	50 - 150	1
VIGK 264	0.000	0.315	0.317	0.400	0.7%	< 30	78.8%	79.4%	50 - 150	1
Vyclobutanil	0.000	0.318	0.305	0.400	4.0%	< 30	79.5%	76.4%	50 - 150	1
Naled	0.000	0.819	0.810	1.000	1.1%	< 30	81.9%	81.0%	50 - 150	1
Oxamyl	0.000	2.141	1.883	2.000	12.8%	< 30	107.1%	94.2%	50 - 150	1
Paclobutrazol	0.000	0.614	0.610	0.800	0.7%	< 30	76.8%	76.2%	50 - 150	1-
Parathion Methyl	0.651	1.086	1.100	0.800	3.0%	< 30	54.4%	56.1%	30 - 150	1 -
Permethrin	0.000	0.265	0.254	0.400	4.0%	< 30	66.2%	63.5%	50 - 150	1 -
										1
Phosmet	0.000	0.330	0.332	0.400	0.4%	< 30	82.5%	82.9%	50 - 150 50 - 150	-
Piperonyl butoxide	0.005	1.687	1.643	2.000	2.6%	< 30	84.1%	81.9%		1
Prallethrin	0.022	0.407	0.424	0.400	4.3%	< 30	96.3%	100.5%	50 - 150	
Propiconazole	0.000	0.615	0.610	0.800	0.9%	< 30	76.9%	76.2%	50 - 150	
Propoxur	0.000	0.316	0.309	0.400	2.3%	< 30	79.1%	77.3%	50 - 150	
Pyrethrins	0.011	0.276	0.276	0.413	0.0%	< 30	64.2%	64.2%	50 - 150	
Pyridaben	0.000	0.274	0.268	0.400	2.4%	< 30	68.5%	66.9%	50 - 150	
Spinosad	0.000	0.332	0.319	0.388	4.0%	< 30	85.6%	82.2%	50 - 150	
Spiromesifen	0.000	0.297	0.298	0.400	0.4%	< 30	74.3%	74.6%	50 - 150	
Spirotetramat	0.000	0.383	0.387	0.400	1.1%	< 30	95.6%	96.7%	50 - 150	I
Spiroxamine	0.000	0.740	0.742	0.800	0.2%	< 30	92.5%	92.7%	50 - 150	
ebuconazol	0.000	0.617	0.610	0.800	1.2%	< 30	77.1%	76.2%	50 - 150	
Thiacloprid	0.000	0.266	0.264	0.400	0.7%	< 30	66.4%	66.0%	50 - 150	1
Thiamethoxam	0.000	0.470	0.401	0.400	15.9%	< 30	117.5%	100.2%	50 - 150	
Trifloxystrobin	0.000	0.321	0.320	0.400	0.0%	< 30	80.1%	80.1%	50 - 150	1

Trifloxystrobin

Report Number: 21-012071/D004.R000

10/19/2021 Report Date: ORELAP#: OR100028

Purchase Order:

Received: 10/12/21 14:15

Revision #: 0.00 Control : CFL-D06 Revision Date: 05/31/2019 Effective Date: 05/31/2019

		Labor	atory	Quality Co	ontrol Results		
J AOAC 2015 V98-	·6				ch ID: 2109283		
Laboratory Contro	l Sample						
Analyte	Result	Spike	Units	% Rec	Limits	Evaluation	Notes
CBDVA	0.198	0.2	%	99.0	85.0 - 115	Acceptable	
CBDV	0.205	0.2	%	103	85.0 - 115	Acceptable	
CBE	0.199	0.2	%	99.5	85.0 - 115	Acceptable	
CBDA	0.219	0.2	%	109	85.0 - 115	Acceptable	
CBGA	0.191	0.2	%	95.7	85.0 - 115	Acceptable	
CBG	0.192	0.2	%	95.9	85.0 - 115	Acceptable	
CBD	0.213	0.2	%	107	85.0 - 115	Acceptable	
THCV	0.186	0.2	%	93.1	85.0 - 115	Acceptable	
d8THCV	0.191	0.2	%	95.3	85.0 - 115	Acceptable	
THCVA	0.190	0.2	%	94.8	85.0 - 115	Acceptable	
CBN	0.211	0.2	%	105	85.0 - 115	Acceptable	
exo-THC	0.183	0.2	%	91.6	85.0 - 115	Acceptable	
d9THC	0.199	0.2	%	99.3	85.0 - 115	Acceptable	
d8THC	0.186	0.2	%	93.1	85.0 - 115	Acceptable	
CBL	0.177	0.2	%	88.3	85.0 - 115	Acceptable	
CBC	0.190	0.2	%	95.1	85.0 - 115	Acceptable	
THCA	0.209	0.2	%	105	85.0 - 115	Acceptable	
CBCA	0.200	0.2	%	99.8	85.0 - 115	Acceptable	
CBLA	0.196	0.2	%	98.2	85.0 - 115	Acceptable	
CBT	0.194	0.2	%	97.0	85.0 - 115	Acceptable	

Method Blank						
Analyte	Result	LOQ	Units	Limits	Evaluation	Notes
CBDVA	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
CBDV	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
CBE	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
CBDA	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
CBGA	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
CBG	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
CBD	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
THCV	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
d8THCV	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
THCVA	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
CBN	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
exo-THC	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
d9THC	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
d8THC	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
CBL	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
CBC	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
THCA	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
CBCA	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
CBLA	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
CBT	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	

Abbreviations

ND - None Detected at or above MRL RPD - Relative Percent Difference LOQ - Limit of Quantitation

Units of Measure:

% - Percent

Report Number: 21-012071/D004.R000

10/19/2021 Report Date: ORELAP#: OR100028

Purchase Order:

Received: 10/12/21 14:15

Revision #: 0.00 Control : CFL-D06 Revision Date: 05/31/2019 Effective Date: 05/31/2019

Laboratory Quality Control Results

J AOAC 2015 \	V98-6				Bate	ch ID: 2109283		
Sample Duplic	ate				Sam	ole ID: 21-0120 4	10-0001	
Analyte	Result	Org. Result	LOQ	Units	RPD	Limits	Evaluation	Notes
CBDVA	<loq< td=""><td><loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.1	%	NA	< 20	Acceptable	
CBDV	<loq< td=""><td><loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.1	%	NA	< 20	Acceptable	
CBE	<loq< td=""><td><loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.1	%	NA	< 20	Acceptable	
CBDA	<loq< td=""><td><loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.1	%	NA	< 20	Acceptable	
CBGA	<loq< td=""><td><loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.1	%	NA	< 20	Acceptable	
CBG	<loq< td=""><td><loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.1	%	NA	< 20	Acceptable	
CBD	<loq< td=""><td><loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.1	%	NA	< 20	Acceptable	
THCV	<loq< td=""><td><loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.1	%	NA	< 20	Acceptable	
d8THCV	<loq< td=""><td><loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.1	%	NA	< 20	Acceptable	
THCVA	<loq< td=""><td><loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.1	%	NA	< 20	Acceptable	
CBN	25.3	25.6	0.1	%	1.22	< 20	Acceptable	
exo-THC	<loq< td=""><td><loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.1	%	NA	< 20	Acceptable	
d9THC	<loq< td=""><td><loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.1	%	NA	< 20	Acceptable	
d8THC	<loq< td=""><td><loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.1	%	NA	< 20	Acceptable	
CBL	<loq< td=""><td><loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.1	%	NA	< 20	Acceptable	
CBC	<loq< td=""><td><loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.1	%	NA	< 20	Acceptable	
THCA	<loq< td=""><td><loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.1	%	NA	< 20	Acceptable	
CBCA	<loq< td=""><td><loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.1	%	NA	< 20	Acceptable	
CBLA	<loq< td=""><td><loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.1	%	NA	< 20	Acceptable	
CBT	<loq< td=""><td><loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.1	%	NA	< 20	Acceptable	

Abbreviations

ND - None Detected at or above MRL RPD - Relative Percent Difference

LOQ - Limit of Quantitation

NA - Calculation Not Applicable given non-numerical results

Units of Measure:

% - Percent

Report Number: 21-012071/D004.R000

Report Date: 10/19/2021 ORELAP#: OR100028

Purchase Order:

10/12/21 14:15 Received:

Revision: Document ID: Legacy ID: Effective:

	Labo	orator	/ Qual	ity Contro	ol Results							Legac
Residual Solvents				,		Ba	tch ID:	210940	00			
Method Blank					Laborato	ry Control S	ample					
Analyte	Result		LOQ	Notes	Result	Spike	Units	% Rec	L	imits	Notes	
Propane	ND	<	200		459	407	µg/g	112.8	70	- 1	30	
Isobutane	ND	<	200		521	491	µg/g	106.1	70	- 1	30	
Butane	ND	<	200		515	491	µg/g	104.9	70	- 1	30	
2,2-Dimethylpropane	ND	<	200		734	609	μg/g	120.5	70	- 1	30	
Methanol	ND	<	200		1590	1610	μg/g	98.8	70	- 1	30	
Ethylene Oxide	ND	<	30		34.3	38.9	μg/g	88.2	70	- 1	30	
2-Methylbutane	ND	<	200		1540	1610	μg/g	95.7	70	- 1	30	
Pentane	ND	<	200		1530	1610	μg/g	95.0	70	- 1	30	
Ethanol	ND	<	200		1720	1610	µg/g	106.8	70	- 1	30	
Ethyl Ether	ND	<	200		1510	1610	μg/g	93.8	70	- 1	30	
2,2-Dimethylbutane	ND	٧	30		147	164	μg/g	89.6	70	- 1	30	
Acetone	ND	٧	200		1550	1610	μg/g	96.3	70	- 1	30	
2-Propanol	ND	٧	200		1660	1610	μg/g	103.1	70	- 1	30	
Acetonitrile	ND	<	100		473	484	μg/g	97.7	70	- 1	30	
2,3-Dimethylbutane	ND	<	30		183	167	μg/g	109.6	70	- 1	30	
Dichloromethane	ND	<	60		478	491	μg/g	97.4	70	- 1	30	
2-Methylpentane	ND	<	30		168	165	μg/g	101.8	70	- 1	30	
3-Methylpentane	ND	٧	30		173	172	μg/g	100.6	70	- 1	30	
Hexane	ND	٧	30		163	167	μg/g	97.6	70	- 1	30	
Ethyl acetate	ND	٧	200		1590	1610	μg/g	98.8	70	- 1	30	
2-Butanol	ND	٧	200		1610	1610	μg/g	100.0	70	- 1	30	
Tetrahydrofuran	ND	٧	100		498	483	μg/g	103.1	70	- 1	30	
Cyclohexane	ND	<	200		1450	1610	μg/g	90.1	70	- 1	30	
Benzene	ND	<	1		4.96	5.36	μg/g	92.5	70	- 1	30	
Isopropyl Acetate	ND	<	200		1690	1620	μg/g	104.3	70	- 1	30	
Heptane	ND	٧	200		1540	1610	μg/g	95.7	70	- 1	30	
1,4-Dioxane	ND	<	100		489	489	μg/g	100.0	70	- 1	30	
2-Ethoxyethanol	ND	٧	30		156	167	μg/g	93.4	70	- 1	30	
Ethylene Glycol	ND	<	200		476	504	µg/g	94.4	70	- 1	30	
Toluene	ND	<	200		462	484	μg/g	95.5	70	- 1	30	
Ethylbenzene	ND	<	200		944	968	μg/g	97.5	70	- 1	80	
m,p-Xylene	ND	<	200		982	977	μg/g	100.5	70	- 1	30	
o-Xylene	ND	<	200		1000	982	μg/g	101.8	70	- 1	80	
Cumene	ND	<	30		169	169	µg/g	100.0	70	- 1	30	

Report Number: 21-012071/D004.R000

10/19/2021 Report Date: ORELAP#: OR100028

Purchase Order:

Received: 10/12/21 14:15

Revision: Document ID: Legacy ID: Effective:

QC - Sample Duplicate							21-011973-0001	
Analyte	Result	Org. Result	LOQ	Units	RPD	Limits	Accept/Fail	Notes
Propane	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Isobutane	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Butane	ND	ND	200	µg/g	0.0	< 20	Acceptable	
2,2-Dimethylpropane	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Methanol	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Ethylene Oxide	ND	ND	30	µg/g	0.0	< 20	Acceptable	
2-Methylbutane	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Pentane	ND	ND	200	μg/g	0.0	< 20	Acceptable	
Ethanol	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Ethyl Ether	ND	ND	200	µg/g	0.0	< 20	Acceptable	
2,2-Dimethylbutane	ND	ND	30	µg/g	0.0	< 20	Acceptable	
Acetone	ND	ND	200	µg/g	0.0	< 20	Acceptable	
2-Propanol	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Acetonitrile	ND	ND	100	µg/g	0.0	< 20	Acceptable	
2,3-Dimethylbutane	ND	ND	30	µg/g	0.0	< 20	Acceptable	
Dichloromethane	ND	ND	60	µg/g	0.0	< 20	Acceptable	
2-Methylpentane	ND	ND	30	µg/g	0.0	< 20	Acceptable	
3-Methylpentane	ND	ND	30	μg/g	0.0	< 20	Acceptable	
Hexane	ND	ND	30	µg/g	0.0	< 20	Acceptable	
Ethyl acetate	ND	ND	200	µg/g	0.0	< 20	Acceptable	
2-Butanol	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Tetrahydrofuran	ND	ND	100	μg/g	0.0	< 20	Acceptable	
Cyclohexane	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Benzene	ND	ND	1	µg/g	0.0	< 20	Acceptable	
Isopropyl Acetate	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Heptane	ND	ND	200	µg/g	0.0	< 20	Acceptable	
1,4-Dioxane	ND	ND	100	µg/g	0.0	< 20	Acceptable	
2-Ethoxyethanol	ND	ND	30	µg/g	0.0	< 20	Acceptable	
Ethylene Glycol	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Toluene	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Ethylbenzene	ND	ND	200	µg/g	0.0	< 20	Acceptable	
m,p-Xylene	ND	ND	200	µg/g	0.0	< 20	Acceptable	
o-Xylene	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Cumene	ND	ND	30	нв/в	0.0	< 20	Acceptable	

Abbreviations

ND - None Detected at or above MRL RPD - Relative Percent Difference LOQ - Limit of Quantitation

Units of Measure:

μg/g- Microgram per gram or ppm

Report Number: 21-012071/D004.R000

10/19/2021 Report Date: ORELAP#: OR100028

Purchase Order:

Received: 10/12/21 14:15

Revision: Document ID: Legacy ID: Effective:

Terpenes Quality Cortrol Results

Method Reference: E	PA5035	Torporto	o quan	ty Contro	or result	.5	Batch	D: 210940	7
Method Blank	. 7 0000			Laborator	y Control	Sample			•
Analyte	Result	LOQ	Notes	Result	LCS	Units	LCS % Rec	Limits	Notes
a-pinene	<l00< td=""><td>< 200</td><td></td><td>435</td><td>500</td><td>μg/g</td><td>87%</td><td>70 - 130</td><td>140100</td></l00<>	< 200		435	500	μg/g	87%	70 - 130	140100
Camplene	<l00< td=""><td>< 200</td><td></td><td>459</td><td>500</td><td>μg/g</td><td>92%</td><td>70 - 130</td><td></td></l00<>	< 200		459	500	μg/g	92%	70 - 130	
Sabinene	<l0q< td=""><td>< 200</td><td></td><td>429</td><td>500</td><td>μg/g</td><td>86%</td><td>70 - 130</td><td></td></l0q<>	< 200		429	500	μg/g	86%	70 - 130	
b-Pinene	<l0q< td=""><td>< 200</td><td></td><td>425</td><td>500</td><td>μg/g</td><td>85%</td><td>70 - 130</td><td></td></l0q<>	< 200		425	500	μg/g	85%	70 - 130	
b-Myrcene	<l@< td=""><td>< 200</td><td></td><td>451</td><td>500</td><td>μg/g</td><td>90%</td><td>70 - 130</td><td></td></l@<>	< 200		451	500	μg/g	90%	70 - 130	
a-phellandrene	<l00< td=""><td>< 200</td><td></td><td>463</td><td>500</td><td>μg/g</td><td>93%</td><td>70 - 130</td><td></td></l00<>	< 200		463	500	μg/g	93%	70 - 130	
d-3-Carene	<l00< td=""><td>< 200</td><td></td><td>506</td><td>500</td><td>μg/g</td><td>101%</td><td>70 - 130</td><td></td></l00<>	< 200		506	500	μg/g	101%	70 - 130	
a-Terpinene	<l0q< td=""><td>< 200</td><td></td><td>384</td><td>500</td><td>μg/g</td><td>77%</td><td>70 - 130</td><td></td></l0q<>	< 200		384	500	μg/g	77%	70 - 130	
p-Cymene	<l00< td=""><td>< 200</td><td></td><td>444</td><td>500</td><td>μg/g</td><td>89%</td><td>70 - 130</td><td></td></l00<>	< 200		444	500	μg/g	89%	70 - 130	
D-Limonene	<lqq< td=""><td>< 200</td><td></td><td>412</td><td>500</td><td>μg/g</td><td>82%</td><td>70 - 130</td><td></td></lqq<>	< 200		412	500	μg/g	82%	70 - 130	
Euælyptol	<lqq< td=""><td>< 200</td><td></td><td>429</td><td>500</td><td>μg/g</td><td>86%</td><td>70 - 130</td><td></td></lqq<>	< 200		429	500	μg/g	86%	70 - 130	
b-ds-Ocimene	<l00< td=""><td>< 67</td><td></td><td>145</td><td>167</td><td>μg/g</td><td>87%</td><td>70 - 130</td><td></td></l00<>	< 67		145	167	μg/g	87%	70 - 130	
b-trans-Ocimene	<l0q< td=""><td>< 133</td><td></td><td>299</td><td>333</td><td>μg/g</td><td>90%</td><td>70 - 130</td><td></td></l0q<>	< 133		299	333	μg/g	90%	70 - 130	
g-Terpinene	<l0q< td=""><td>< 200</td><td></td><td>427</td><td>500</td><td>μg/g</td><td>85%</td><td>70 - 130</td><td></td></l0q<>	< 200		427	500	μg/g	85%	70 - 130	
Sabinene Hydrate	<l00< td=""><td>< 200</td><td></td><td>400</td><td>500</td><td>μg/g</td><td>80%</td><td>70 - 130</td><td></td></l00<>	< 200		400	500	μg/g	80%	70 - 130	
Terpinolene	<l@q< td=""><td>< 200</td><td></td><td>378</td><td>500</td><td>μg/g</td><td>76%</td><td>70 - 130</td><td></td></l@q<>	< 200		378	500	μg/g	76%	70 - 130	
D-Fenchone	<l0q< td=""><td>< 200</td><td></td><td>432</td><td>500</td><td>μg/g</td><td>86%</td><td>70 - 130</td><td></td></l0q<>	< 200		432	500	μg/g	86%	70 - 130	
Linalool	<l@q< td=""><td>< 200</td><td></td><td>474</td><td>500</td><td>μg/g</td><td>95%</td><td>70 - 130</td><td></td></l@q<>	< 200		474	500	μg/g	95%	70 - 130	
Fenchol	<l0q< td=""><td>< 200</td><td></td><td>416</td><td>500</td><td>μg/g</td><td>83%</td><td>70 - 130</td><td></td></l0q<>	< 200		416	500	μg/g	83%	70 - 130	
Camplor	<l00< td=""><td>< 200</td><td></td><td>422</td><td>500</td><td>μg/g</td><td>84%</td><td>70 - 130</td><td></td></l00<>	< 200		422	500	μg/g	84%	70 - 130	
Isapulego	<l0q< td=""><td>< 200</td><td></td><td>444</td><td>500</td><td>μg/g</td><td>89%</td><td>70 - 130</td><td></td></l0q<>	< 200		444	500	μg/g	89%	70 - 130	
Isdorneol	<lqq< td=""><td>< 200</td><td></td><td>422</td><td>500</td><td>μg/g</td><td>84%</td><td>70 - 130</td><td></td></lqq<>	< 200		422	500	μg/g	84%	70 - 130	
Borneol	<l0q< td=""><td>< 200</td><td></td><td>419</td><td>500</td><td>μg/g</td><td>84%</td><td>70 - 130</td><td></td></l0q<>	< 200		419	500	μg/g	84%	70 - 130	
DL-Menthol	<l00< td=""><td>< 200</td><td></td><td>425</td><td>500</td><td>μg/g</td><td>85%</td><td>70 - 130</td><td></td></l00<>	< 200		425	500	μg/g	85%	70 - 130	
Terpineol	<lqq< td=""><td>< 200</td><td></td><td>399</td><td>500</td><td>μg/g</td><td>80%</td><td>70 - 130</td><td></td></lqq<>	< 200		399	500	μg/g	80%	70 - 130	
Nerol	<l00< td=""><td>< 200</td><td></td><td>390</td><td>500</td><td>μg/g</td><td>78%</td><td>70 - 130</td><td></td></l00<>	< 200		390	500	μg/g	78%	70 - 130	
Pulegone	<l00< td=""><td>< 200</td><td></td><td>441</td><td>500</td><td>μg/g</td><td>88%</td><td>70 - 130</td><td></td></l00<>	< 200		441	500	μg/g	88%	70 - 130	
Gerenol	<l@q< td=""><td>< 200</td><td></td><td>437</td><td>500</td><td>μg/g</td><td>87%</td><td>70 - 130</td><td></td></l@q<>	< 200		437	500	μg/g	87%	70 - 130	
Geranyl_Acetate	<l00< td=""><td>< 200</td><td></td><td>408</td><td>500</td><td>μg/g</td><td>82%</td><td>70 - 130</td><td></td></l00<>	< 200		408	500	μg/g	82%	70 - 130	
a-Cedrene	<l0q< td=""><td>< 200</td><td></td><td>414</td><td>500</td><td>μg/g</td><td>83%</td><td>70 - 130</td><td></td></l0q<>	< 200		414	500	μg/g	83%	70 - 130	
b-Caryophyllene	<l0q< td=""><td>< 200</td><td></td><td>385</td><td>500</td><td>μg/g</td><td>77%</td><td>70 - 130</td><td></td></l0q<>	< 200		385	500	μg/g	77%	70 - 130	
a-Humulene	<l0q< td=""><td>< 200</td><td></td><td>461</td><td>500</td><td>μg/g</td><td>92%</td><td>70 - 130</td><td></td></l0q<>	< 200		461	500	μg/g	92%	70 - 130	
Valenene	<l0q< td=""><td>< 200</td><td></td><td>366</td><td>500</td><td>μg/g</td><td>73%</td><td>70 - 130</td><td></td></l0q<>	< 200		366	500	μg/g	73%	70 - 130	
cis-Nerolidol	<l0q< td=""><td>< 200</td><td></td><td>425</td><td>500</td><td>μg/g</td><td>85%</td><td>70 - 130</td><td></td></l0q<>	< 200		425	500	μg/g	85%	70 - 130	
a-Famesene	<l0q< td=""><td>< 200</td><td></td><td>494</td><td>500</td><td>μg/g</td><td>99%</td><td>70 - 130</td><td></td></l0q<>	< 200		494	500	μg/g	99%	70 - 130	
trans-Nerolidol	<l0q< td=""><td>< 200</td><td></td><td>434</td><td>500</td><td>μg/g</td><td>87%</td><td>70 - 130</td><td></td></l0q<>	< 200		434	500	μg/g	87%	70 - 130	
Caryophyllene_Oxide	<l0q< td=""><td>< 200</td><td></td><td>523</td><td>500</td><td>μg/g</td><td>105%</td><td>70 - 130</td><td></td></l0q<>	< 200		523	500	μg/g	105%	70 - 130	
Guaiol	<l0q< td=""><td>< 200</td><td></td><td>438</td><td>500</td><td>μg/g</td><td>88%</td><td>70 - 130</td><td></td></l0q<>	< 200		438	500	μg/g	88%	70 - 130	
Cedrol	<l0q< td=""><td>< 200</td><td></td><td>395</td><td>500</td><td>μg/g</td><td>79%</td><td>70 - 130</td><td></td></l0q<>	< 200		395	500	μg/g	79%	70 - 130	
a-Bsabdol	<l0q< td=""><td>< 200</td><td></td><td>427</td><td>500</td><td>μg/g</td><td>85%</td><td>70 - 130</td><td></td></l0q<>	< 200		427	500	μg/g	85%	70 - 130	

Definitions

LOQ Limit of Quantitation LCS Laboratory Control Sample %REC

Percent Recovery

Report Number: 21-012071/D004.R000

10/19/2021 Report Date: ORELAP#: OR100028

Purchase Order:

Received: 10/12/21 14:15

Revision: Document ID: Legacy ID: Effective:

Terpenes Quality Cortrol Results

Method Reference: El		·				ID: 210940)7
Sample/Sample Dupli		·			21-012071-0		
Analyte	Result	Org. Result	LOQ	Units	% RPD	LIMIT	Notes
a-pinene	1850	1790	187	μg/g	3%	< 20	
Camplene	292	292	187	μg/g	0%	< 20	
Sabinene	<l0q< td=""><td><l00< td=""><td>187</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></l00<></td></l0q<>	<l00< td=""><td>187</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></l00<>	187	μg/g	0%	< 20	
b-Pinene	2400	2360	187	μg/g	2%	< 20	
b-Myrcene	44200	43000	187	μg/g	3%	< 20	
a-phellandrene	1010	969	187	μg/g	4%	< 20	
d-3-Carene	700	728	187	μg/g	4%	< 20	
a-Terpinene	1010	1030	187	μg/g	2%	< 20	
p-Cymene	295	247	187	μg/g	18%	< 20	
D-Limonene	10300	10100	187	μg/g	2%	< 20	
Eucalyptol	<l0q< td=""><td><lqq< td=""><td>187</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></lqq<></td></l0q<>	<lqq< td=""><td>187</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></lqq<>	187	μg/g	0%	< 20	
b-ds-Ocimene	267	248	62.3	μg/g	7%	< 20	
b-trans-Ocimene	5850	5700	125	μg/g	3%	< 20	
g-Terpinene	704	699	187	μg/g	1%	< 20	
Sabinene_Hydrate	<loq< td=""><td><lqq< td=""><td>187</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></lqq<></td></loq<>	<lqq< td=""><td>187</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></lqq<>	187	μg/g	0%	< 20	
Terpinolene	22800	22400	187	μg/g	2%	< 20	
D-Fenchone	<l0q< td=""><td><loq< td=""><td>187</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<></td></l0q<>	<loq< td=""><td>187</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<>	187	μg/g	0%	< 20	
Linalool	1230	1200	187	μg/g	2%	< 20	
Fenchol	1040	1030	187	μg/g	1%	< 20	
Camplor	<l0q< td=""><td><l00< td=""><td>187</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></l00<></td></l0q<>	<l00< td=""><td>187</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></l00<>	187	μg/g	0%	< 20	
Isquelego	<loq< td=""><td><lqq< td=""><td>187</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></lqq<></td></loq<>	<lqq< td=""><td>187</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></lqq<>	187	μg/g	0%	< 20	
Isdorneol	<l0q< td=""><td><l00< td=""><td>187</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></l00<></td></l0q<>	<l00< td=""><td>187</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></l00<>	187	μg/g	0%	< 20	
Borneol	240	240	187	μg/g	0%	< 20	
DL-Menthol	<l0q< td=""><td><l00< td=""><td>187</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></l00<></td></l0q<>	<l00< td=""><td>187</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></l00<>	187	μg/g	0%	< 20	
Terpineol	917	898	187	μg/g	2%	< 20	
Nerol	<l0q< td=""><td><l00< td=""><td>187</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></l00<></td></l0q<>	<l00< td=""><td>187</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></l00<>	187	μg/g	0%	< 20	
Pulegone	<loq< td=""><td><lqq< td=""><td>187</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></lqq<></td></loq<>	<lqq< td=""><td>187</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></lqq<>	187	μg/g	0%	< 20	
Gereniol	<loq< td=""><td><lqq< td=""><td>187</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></lqq<></td></loq<>	<lqq< td=""><td>187</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></lqq<>	187	μg/g	0%	< 20	
Geranyl_Acetate	<loq< td=""><td><lqq< td=""><td>187</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></lqq<></td></loq<>	<lqq< td=""><td>187</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></lqq<>	187	μg/g	0%	< 20	
a-Cedrene	<loq< td=""><td><lqq< td=""><td>187</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></lqq<></td></loq<>	<lqq< td=""><td>187</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></lqq<>	187	μg/g	0%	< 20	
b-Caryophyllene	7510	7390	187	μg/g	2%	< 20	
a-Humulene	3200	3080	187	μg/g	4%	< 20	
Valenene	624	572	187	μg/g	9%	< 20	
cis-Nerolidol	<loq< td=""><td><lqq< td=""><td>187</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></lqq<></td></loq<>	<lqq< td=""><td>187</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></lqq<>	187	μg/g	0%	< 20	
a-Farnesene	6700	6590	187	μg/g	2%	< 20	
trans-Nerolidol	537	501	187	μg/g	7%	< 20	
Caryophyllene_Oxide	423	414	187	μg/g	2%	< 20	
Guaol	5070	5010	187	μg/g	1%	< 20	
Cedrol	<l0q< td=""><td><l00< td=""><td>187</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></l00<></td></l0q<>	<l00< td=""><td>187</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></l00<>	187	μg/g	0%	< 20	
a-Bsabdol	1100	1070	187	μg/g	3%	< 20	

Definitions

Relative Percent Difference

Report Number: 21-012071/D004.R000

10/19/2021 Report Date: ORELAP#: OR100028

Purchase Order:

Received: 10/12/21 14:15

Explanation of QC Flag Comments:

Code	Explanation
Q	Matrix interferences affecting spike or surrogate recoveries.
Q1	Quality control result biased high. Only non-detect samples reported.
Q2	Quality control outside QC limits. Data considered estimate.
Q3	Sample concentration greater than four times the amount spiked.
Q4	Non-homogenous sample matrix, affecting RPD result and/or % recoveries.
Q5	Spike results above calibration curve.
Q6	Quality control outside QC limits. Data acceptable based on remaining QC.
R	Relative percent difference (RPD) outside control limit.
R1	RPD non-calculable, as sample or duplicate results are less than five times the LOQ.
R2	Sample replicates RPD non-calculable, as only one replicate is within the analytical range.
LOQ1	Quantitation level raised due to low sample volume and/or dilution.
LOQ2	Quantitaion level raised due to matrix interference.
В	Analyte detected in method blank, but not in associated samples.
B1	The sample concentration is greater than 5 times the blank concentration.
B2	The sample concentration is less than 5 times the blank concentration.

KCA Laboratories 232 North Plaza Drive Nicholasville, KY 40356

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

1 of 1

PAPL-0822-1

Sample ID: SA-220803-10960

Batch:

Type: In-Process Materials Matrix: Concentrate - Distillate

Unit Mass (g):

Co mpleted: 09/20/2022

Client

Alchemy Processing Laboratory, LLC. 16800 Coal Creek Canyon Road Arvada, CO 80007

USA

Summary

Test Cannabinoids **Date Tested** 09/20/2022

Status Tested

ND Total Δ9-THC

82.4 % Δ9-ΤΗСР 86.2 %

Total Cannabinoids

Not Tested

Moisture Content

Not Tested

Foreign Matter

Yes

Internal Standard Normalization

Cannabinoids by HPLC-PDA, LC-MS/MS, and/or GC-MS/MS

	100		D.	D
Analyte	LOD (%)	LOQ (%)	Result (%)	Result (mg/g)
CBC	0.0095	0.0284	ND	ND
CBCA	0.0181	0.0543	ND	ND
CBCV	0.006	0.018	ND	ND
CBD	0.0081	0.0242	ND	ND
CBDA	0.0043	0.013	ND	ND
CBDP	0.0067	0.02	ND	ND
CBDV	0.0061	0.0182	ND	ND
CBDVA	0.0021	0.0063	ND	ND
CBG	0.0057	0.0172	ND	ND
CBGA	0.0049	0.0147	ND	ND
CBL	0.0112	0.0335	ND	ND
CBLA	0.0124	0.0371	ND	ND
CBN	0.0056	0.0169	ND	ND
CBNA	0.006	0.0181	ND	ND
CBT	0.018	0.054	ND	ND
Δ8-ΤΗС	0.0104	0.0312	0.0394	0.394
Δ8-ΤΗСΡ	0.0067	0.02	3.78	37.8
Δ9-ΤΗС	0.0076	0.0227	ND	ND
Δ9-ΤΗСΑ	0.0084	0.0251	ND	ND
Δ9-ΤΗСΡ	0.0067	0.02	82.4	824
Δ9-ΤΗCV	0.0069	0.0206	ND	ND
Δ9-ΤΗСVΑ	0.0062	0.0186	ND	ND
Total Δ9-Ti	łC		ND	ND
Total CBD			ND	ND
Total			86.2	862

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; RL = Reporting Limit; Δ = Delta; Total Δ 9-THC = Δ 9-THC4 * 0.877 + Δ 9-THC; Total CBD = CBDA * 0.877 + CBD;

Generated By: Ryan Bellone Commercial Director Date: 08/17/2022

Tested By: Scott Caudill Senior Scientist Date: 08/17/2022

ISO/IEC 17025:2017 Accredited Accreditation #108651